Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest.

نویسندگان

  • Christian Crouzet
  • Robert H Wilson
  • Afsheen Bazrafkan
  • Maryam H Farahabadi
  • Donald Lee
  • Juan Alcocer
  • Bruce J Tromberg
  • Bernard Choi
  • Yama Akbari
چکیده

In the present study, we have developed a multi-modal instrument that combines laser speckle imaging, arterial blood pressure, and electroencephalography (EEG) to quantitatively assess cerebral blood flow (CBF), mean arterial pressure (MAP), and brain electrophysiology before, during, and after asphyxial cardiac arrest (CA) and resuscitation. Using the acquired data, we quantified the time and magnitude of the CBF hyperemic peak and stabilized hypoperfusion after resuscitation. Furthermore, we assessed the correlation between CBF and MAP before and after stabilized hypoperfusion. Finally, we examined when brain electrical activity resumes after resuscitation from CA with relation to CBF and MAP, and developed an empirical predictive model to predict when brain electrical activity resumes after resuscitation from CA. Our results show that: 1) more severe CA results in longer time to stabilized cerebral hypoperfusion; 2) CBF and MAP are coupled before stabilized hypoperfusion and uncoupled after stabilized hypoperfusion; 3) EEG activity (bursting) resumes after the CBF hyperemic phase and before stabilized hypoperfusion; 4) CBF predicts when EEG activity resumes for 5-min asphyxial CA, but is a poor predictor for 7-min asphyxial CA. Together, these novel findings highlight the importance of using multi-modal approaches to investigate CA recovery to better understand physiological processes and ultimately improve neurological outcome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Cerebral Performance Categories Based on Initial Rhythm and Resuscitation Time Following In-Hospital Cardiac Arrest in a State Hospital in Turkey

Background: The cerebral performance category (CPC) score is widely used in research and quality assurance to assess neurologic outcome following cardiac arrest. However, little is known about the results of the CPC in Turkey. Objective: This study aimed to determine whether the CPC is associated with the initial rhythm and resuscitation time following re...

متن کامل

Alterations in Cerebral Blood Flow after Resuscitation from Cardiac Arrest

Greater than 50% of patients successfully resuscitated from cardiac arrest have evidence of neurological disability. Numerous studies in children and adults, as well as in animal models have demonstrated that cerebral blood flow (CBF) is impaired after cardiac arrest. Stages of cerebral perfusion post-resuscitation include early hyperemia, followed by hypoperfusion, and finally either resolutio...

متن کامل

Cerebral blood flow in humans following resuscitation from cardiac arrest.

Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient...

متن کامل

Effects of diaspirin cross-linked hemoglobin (DCLHb) during and post-CPR in swine.

The purpose of the study was to test the hypothesis that diaspirin cross-linked hemoglobin (DCLHb) can produce improved resuscitation during cardiac arrest. DCLHb, a derivative of human hemoglobin, has previously been demonstrated to produce a vasopressor response that is associated with increased blood flow to vital organs. In addition, it is an oxygen carrier. These effects may be beneficial ...

متن کامل

Angiotensin II administration improves cerebral blood flow in cardiopulmonary arrest in swine.

BACKGROUND AND PURPOSE Cerebral blood flow during cardiopulmonary resuscitation is inadequate to meet cerebral metabolic demand. Adrenergic agonists improve cerebral blood flow, but clinical trials of increased doses in adults have not shown improved outcome from cardiac arrest. This may be due to adverse beta-agonist-mediated effects. The purpose of this study was to determine the effect of an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical optics express

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2016